为什么我的信号槽比QThreadPool+new+delete慢

Why my signal-slot is slower than QThreadPool+new+delete?

本文关键字:QThreadPool+new+delete 我的 信号 为什么      更新时间:2023-10-16

我正在阅读Qt的信号&Slots[1],并注意到它声称信号和插槽的开销比任何新操作或删除操作都要低得多。所以我做了一个测试:

#include <cmath>
#include <QtCore/QAtomicInt>
#include <QtCore/QCoreApplication>
#include <QtCore/QElapsedTimer>
#include <QtCore/QMetaObject>
#include <QtCore/QMetaMethod>
#include <QtCore/QObject>
#include <QtCore/QRunnable>
#include <QtCore/QTextStream>
#include <QtCore/QThread>
#include <QtCore/QThreadPool>
#include <QtCore/QTimer>
#include <QtCore/QVector>
using std::pow;
constexpr int const maxThreadCount(16);
constexpr int const maxIteration(100000);
constexpr int const maxPiDigit(1000);
void calcPi()
{
    double sum(0);
    for (int k(0); k < maxPiDigit; ++k) {
        double a(4.0 / (k * 8 + 1));
        double b(2.0 / (k * 8 + 4));
        double c(1.0 / (k * 8 + 5));
        double d(1.0 / (k * 8 + 6));
        sum += pow(16, -k) * (a - b - c -d);
    }
    QTextStream out(stdout);
    out << sum << endl;
}
class CalcPiWithQObject : public QObject
{
    Q_OBJECT
    public:
        CalcPiWithQObject(QObject *parent = NULL);
    public slots:
        void start();
    signals:
        void finished();
}; // CalcPiWithQObject
CalcPiWithQObject::CalcPiWithQObject(QObject *parent):
    QObject(parent)
{}
void CalcPiWithQObject::start()
{
    calcPi();
    finished();
}
class CalcPiWithQRunnable : public QRunnable
{
    private:
        static QAtomicInt count_;
    public:
        CalcPiWithQRunnable(QThreadPool *parent);
        void run() override;
    private:
        QThreadPool *parent_;
}; // CalcPiWithQRunnable
QAtomicInt CalcPiWithQRunnable::count_(maxThreadCount);
CalcPiWithQRunnable::CalcPiWithQRunnable(QThreadPool *parent):
    QRunnable(),
    parent_(parent)
{
    setAutoDelete(false);
}
void CalcPiWithQRunnable::run()
{
    calcPi();
    if (count_.fetchAndAddOrdered(1) < maxIteration) {
        parent_->start(new CalcPiWithQRunnable(parent_));
    }
    delete this;
}
class PiTest : public QObject
{
    Q_OBJECT
    public:
        PiTest(QObject *parent = NULL);
    public slots:
        void start();
        void nextQObjectCall();
    private:
        QVector<QThread *> threads_;
        QVector<CalcPiWithQObject *> calc_;
        QThreadPool *threadPool_;
        QElapsedTimer timer_;
        int threadCount_;
        int jobCount_;
}; // PiTest
PiTest::PiTest(QObject *parent):
    QObject(parent),
    threads_(maxThreadCount),
    calc_(maxThreadCount),
    threadPool_(new QThreadPool(this)),
    threadCount_(maxThreadCount),
    jobCount_(maxThreadCount)
{
    threadPool_->setMaxThreadCount(maxThreadCount);
    for (int i(0); i < maxThreadCount; ++i) {
        threads_[i] = new QThread();
        calc_[i] = new CalcPiWithQObject();
        calc_[i]->moveToThread(threads_[i]);
        QObject::connect(calc_[i], &CalcPiWithQObject::finished,
                         this, &PiTest::nextQObjectCall,
                         Qt::QueuedConnection);
        QObject::connect(threads_[i], &QThread::started,
                         calc_[i], &CalcPiWithQObject::start,
                         Qt::QueuedConnection);
    }
}
void PiTest::start()
{
    timer_.start();
    for (int i(0); i < maxThreadCount; ++i) {
        threadPool_->start(new CalcPiWithQRunnable(threadPool_));
    }
    threadPool_->waitForDone();
    int timePassed(timer_.elapsed());
    QTextStream out(stdout);
    out << "QThreadPool: " << timePassed << endl;
    timer_.restart();
    for (int i(0); i < maxThreadCount; ++i) {
        threads_[i]->start();
    }
}
static QMetaMethod nextCall(PiTest::staticMetaObject.method(PiTest::staticMetaObject.indexOfMethod("start")));
void PiTest::nextQObjectCall()
{
    jobCount_++;
    if (jobCount_ < maxIteration) {
        nextCall.invoke(sender(), Qt::QueuedConnection);
        QMetaObject::invokeMethod(sender(), "start",
                                  Qt::QueuedConnection);
        return;
    }
    threadCount_--;
    if (threadCount_ == 0) {
        for (int i(0); i < maxThreadCount; ++i) {
            threads_[i]->quit();
        }
        int timePassed(timer_.elapsed());
        QTextStream out(stdout);
        out << "QThread: " << timePassed << endl;
        qApp->quit();
    }
}
int main(int argc, char *argv[])
{
    QCoreApplication app(argc, argv);
    PiTest *bench(new PiTest(qApp));
    QTimer::singleShot(0, bench, SLOT(start()));
    return qApp->exec();
}
#include "main_moc.cpp"

我在一台闲置的20核计算机上进行了测试:

/usr/lib64/qt5/bin/moc -o main_moc.cpp main.cpp
clang++ -std=c++11 -fPIE -O2 -march=native -I/usr/include/qt5/ -L/usr/lib64/qt5 -lQt5Core -o bench main.cpp
./bench > test.out
grep QThread test.out

结果如下:

QThreadPool: 4803
QThread: 9285

我尝试了不同的参数,用更长的圆周率计算和更少的工作,反之亦然,但结果大致相同。QThread+信号/插槽总是落后。有了更多的作业,QThreadPool+new/delete可以轻松地将QThread的性能提高10倍。

我对我的基准代码感到有些尴尬。我是不是误解了什么?如果signal/slot比new/delete快,那么我的基准测试有什么问题?

谢谢。

[1]http://doc.qt.io/qt-5/signalsandslots.html

信号性能因连接类型而异。当您创建线程间连接时,连接会排队,并使用事件循环来调度自己,Qt中的事件循环不仅相当慢,而且上次我检查时,它没有提供任何提高更新率的方法。

这使得跨线程的信号非常慢,我曾经遇到过细粒度并发的情况,这种情况会受到多线程的性能打击,而不是性能提升。

只是为了让您了解直接连接和排队连接之间的区别:

#define COUNT 5000
class Ping : public QObject {
  Q_OBJECT
  Q_SIGNAL void pong(uint);
public slots: void ping(uint c) { if (c < COUNT) emit pong(++c); else qDebug() << t.nsecsElapsed(); }
};
//...
QObject::connect(&p1, SIGNAL(pong(uint)), &p2, SLOT(ping(uint)), Qt::DirectConnection);
QObject::connect(&p2, SIGNAL(pong(uint)), &p1, SLOT(ping(uint)), Qt::DirectConnection);
//...
p1.ping(0);

结果:

Direct connection (in same thread)    - 570504 nsec
Queued connection (in same thread)    - 29670333 nsec
Queued connection (different threads) - 53343054 nsec

您可以清楚地看到,线程间连接几乎比直接连接慢100倍。我怀疑你链接到的文档指的是直接连接。

总而言之,我认为你的考试一团糟。你应该真正简化它,使它变得简单,并专注于你提出的问题。

最后,直接连接可能比新建/删除快,但排队连接肯定不是,它们慢得多,这无疑是性能变化背后的关键因素。您链接到的文档中的声明与QThread + workerQRunnable + thread pool的性能完全无关。最后,在这两种情况下,您都使用动态内存分配/释放和排队连接。